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Abstract 
An experimental prototype for server selection 
using an independent brokerage service is 
described. This prototype is composed of four main 
components: instrumented Apache Web servers, 
monitoring agents, a QoS broker, and client 
emulator. The role of the broker is to distribute 
client sessions to a set of replicated servers. It is 
designed to support different types of selection 
policies and has the capability to collect 
performance data from the servers. We include in 
our description the technique used to instrument 
Apache servers and our implementation of the 
server-broker protocol that we have developed. Our 
implementation of the QoS broker and the 
technique used to collect data for the performance 
parameters of interest are also described. We use 
our prototype to study the performance of server 
selection algorithms under realistic conditions. The 
experimental environment and an analysis of the 
experimental results are presented. 

 

1. Introduction 
 In recent years, we have seen a significant 
growth in the development and deployment of 
distributed applications over the Internet. These 
include electronic commerce applications that 
support the dissemination of information regarding 
a company’s products, and the sale of goods and 
services. For large-scale deployment, the server 
must be able to scale to many users. A common 
approach to improve scalability is server 
replication. An important challenge in replicated 
server architecture is how a client may locate an 
appropriate server without being aware of the 
specific details of replica organization, and how can 

this process scale to a large number of users and 
replica.  

 In our recent work [1], we investigated the 
delegation of server selection functionality to an 
independent brokerage service. Specifically, we 
studied the use of a “broker” to distribute load to a 
set of replicated servers. Our replicated server 
architecture has the following properties: 

• Scalable to a large number of clients. 

• Support for the provision of quality of service. 

• Support for feedback mechanisms by which 
up-to-date performance information on system 
components is available. 

 In our architecture, a broker is used to assign 
clients to servers at the beginning of their sessions. 
After server selection, each client may interact 
directly with the server for a period of time 
specified by the broker. This is different from other 
approaches where server selection is done on a per 
user request basis (see for example [2]). Our 
architecture allows the broker to gather information 
about the status of each server and use such 
information for load balancing purposes. 
Performance data are collected by monitoring 
agents at the servers and sent to the broker. The 
protocol between the broker and the monitoring 
agent is quite straightforward. It simply involves 
the periodic transmission of performance data to the 
broker. Our architecture also allows for a flexible 
organization of resources used by web sites. The 
broker could be at the server site under the same 
authority as the replicated servers. This is 
applicable, for example, to sites with heavy load 
and high degree of replication. Different sites may 
also share the same broker. In this case, the broker 
could be an independent brokerage service that 



 

 

manages the assignment of servers for affiliated 
sites. 
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Figure 1: Basic architecture and interactions 

between its components 

 The negotiation between broker and client is 
carried out at the beginning of a session. The 
protocol between the client and the broker is 
illustrated in Figure 1. The client sends a server 
selection request to the web site address, specified 
by an URL. This URL is mapped by the DNS to the 
IP address of the broker. The broker, upon 
receiving the client's request, selects a server and 
returns the IP address of that server, together with a 
quantum size, to the client. The client then sends its 
requests to this IP address; it also caches the IP 
address to be used for subsequent requests. The 
cache entry will be deleted when the quantum 
expires. Note that the above protocol needs to be 
implemented at the client and we assume that this is 
possible. Note also that the client-broker protocol 
can be extended to include QoS negotiation, which 
can be based on client classification, client 
performance requirement, or server availability. 

 We have developed a prototype for the above 
architecture and conducted experiments to evaluate 
its performance. This prototype is composed of the 
following four components: instrumented Web 
servers, monitoring agents, QoS broker, and client 
emulator. The objective of the experiments is to 
evaluate the performance of server selection 
policies in a real environment. 

 This paper is organized as follows. Section 2 
describes the technique we have used to instrument 
the servers and the reporting protocol between 
monitoring agent and broker. We also describe in 
the same section, the various server performance 
parameters of interest to our study and how they are 

collected. Section 3 describes the implementation of 
the QoS broker and its public access points. Section 
4 contains a description of the various server 
selection policies implemented by the broker and 
used in our experiments. In Section 5, we describe 
the test environment and analyze the experimental 
results. Finally, Section 6 contains a summary of 
our findings and some concluding remarks. 

  
2. Collection of Performance Data  
 In our prototype, each server is associated with 
an agent that monitors its performance and 
periodically reports this information to the broker. 
Figure 2 shows the entire monitoring system, which 
consists of an instrumented Apache Web server, a 
monitoring agent that resides on the same machine 
on which the server is running, and a remote QoS 
broker. 
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Figure 2: Monitoring system 

2.1 Instrumentation of Servers 
 The parameters that need to be measured at the 
server are gathered using function calls inserted as 
probes within the code of the server. Triggers are 
sent to the monitoring agent when these function 
calls are executed. The agent would thus know 
when each transaction started and when it is 
completed. It is also possible to receive other 
information from the server like for instance the 
identity of the client and details about the requested 
pages. The communication between the server and 
the agent is done by means of standard inter-
process communication (IPC) mechanisms like for 
instance pipes or shared memory. 

 We use in our prototype an application 
programming interface (API) called Application 
Response Measurement (ARM). The ARM API is 
made up of a set of functions that are contained in a 



 

 

shared library. Calls to these functions are inserted 
at appropriate places in the code. Performance 
measurement agents that support the API 
implement these functions. The advantage of this 
approach is the isolation of server instrumentation 
from monitoring actions that need to be taken while 
an application is running. Application providers 
have the freedom to choose any monitoring agent 
that best meets their need without the application 
needing any changes. The ARM API that we are 
using has the following functions: 

• arm_init: This function is used in the 
initialization phase of an application. In our 
implementation of the API, we use this 
function to initiate the communication between 
the monitoring agent and the monitored Web 
server. 

• arm_getid: This function is used to obtain a 
unique identifier that is used to characterize a 
class of transactions. It allows us to monitor 
different types of request that a server is 
handling. However, in our implementation, we 
do not use this feature and hence do not 
differentiate between the types of request that 
the Web server is processing. 

• arm_start: This function signals the start of 
execution of an instance of a transaction of a 
particular class. It returns a unique identifier 
that is passed as a parameter for two other 
functions: arm_update and arm_stop. 

• arm_update: This is an optional function that 
can be called any number of times after the 
start of a transaction and before it stops. It can 
be used to signal the progress of a transaction. 

• arm_stop: This function signals the completion 
of a transaction. 

• arm_end: This function is used by an 
application to do the global clean up of all 
resources used by the ARM API. In our 
implementation, when this message is received, 
the monitoring agent sends a message to the 
broker signaling that the server application is 
exiting. 

 Figure 3 shows the instrumentation of an 
Apache server using the ARM API to monitor the 
start and the completion of a client request. 
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Figure 3: Instrumentation of an Apache server 

2.2 Computation of Performance Data 
 Data on the servers' run-time behavior are 
collected by monitoring agents and periodically 
transmitted to the broker. Our monitoring agent 
collects data for the following parameters, which 
are used in our server selection algorithms [1]: 

2.2.1 Mean response time of server  

 The agent has information about when a 
transaction starts and when it stops. These 
correspond to the time at which it receives triggers 
for arm_start() and the corresponding arm_stop(), 
respectively. The difference between the two values 
gives the response time for that particular 
transaction. During each measurement interval, the 
agent keeps track of the number of requests 
completed by each server and the sum of the 
response times for these requests. These two values 
are then used to compute the average response time 
of the server for that particular measurement period. 

2.2.2 Mean service time at server 

 The mean response time includes the mean 
waiting time and mean service time. An Apache 
server is available in a multi-threaded architecture 
for the different Windows platforms and a multi-
process architecture for the UNIX platform. For the 
multi-threaded architecture, the server uses a main 
process which manages a FIFO queue for waiting 
jobs, and a set of worker threads which 
continuously remove and process one job at a time 
from the head of the queue. Our instrumentation is 
done in such a way that it allows us to measure the 



 

 

time spent by each request in the waiting queue. 
The mean service time can then be obtained as the 
difference between the mean waiting time and the 
mean response time.     
 In the multi-process architecture, a new process 
is created for each new connection. The master 
process at the server does not implement a waiting 
queue for jobs and it is therefore not possible to 
isolate the waiting time from the service time. In 
this case, we measure the mean service time at each 
server off-line and statically feed this information to 
the agent and the broker. The measurement is done 
as follows. For each server that we use in our 
experiments, we measure the mean response time 
when the machine is serving only one request at a 
time and when no other jobs are running on it. The 
load generator is configured to emulate one single 
client for a long enough time period to ensure that 
documents of different sizes are fetched. The client 
does not experience any waiting time and hence the 
mean response time can be used as an estimate for 
the mean service time. 

2.2.3 Mean request arrival rate 

 The load on each server is calculated as the 
number of requests received during a measurement 
interval. Every time that the agent receives a trigger 
for an arm_start(), the total number of received 
requests is incremented by one. The request arrival 
rate is computed by dividing this total number by 
the length of the measurement interval. 

2.2.4 Utilization of a server 

 The utilization of a server in a measurement 
interval is calculated as the fraction of time that the 
server is busy servicing requests. It is computed as 
the ratio of the total service time in a measurement 
interval over the length of the interval. 

2.2.5 Mean think time 

 The mean think time is defined to be the time 
between consecutive requests from the same client. 
It should be noted that from the perspective of the 
server, each request could be for an individual 
object, such as a static file, an image, a dynamic 
request, etc. Each client is identified by its IP 
address, which is determined within the Apache 
server code itself and passed to the monitoring 
agent. The monitoring agent keeps track of all the 

think times of each client during a measurement 
interval, and uses this information to compute an 
overall mean think time at the monitored server.  
 
2.3 Performance Reporting Protocol  
 Communication with the broker is carried out 
using UDP packets. A proprietary reporting 
protocol is used between monitoring agents on the 
server side and the broker. This protocol allows the 
agent to register with the broker, send performance 
updates, and sign off when the server is going 
down. As soon as the agent is activated on the 
server side, it registers itself with the broker by 
sending information on the server it is monitoring 
(address and characteristics) to the broker. When 
the broker accepts the registration, it returns a 
unique identifier to be used for all subsequent 
interactions and a desired length for the 
measurement interval. During the lifetime of the 
agent, the collected data is summarized in a report 
that is sent to the broker at the end of each 
measurement interval. The message exchanges 
between the broker and the agent are defined as 
follows (see Figure 4): 

• Registration: A monitoring agent sends this 
message to register the machine on which it is 
running. It is sent each time the agent is 
restarted. It contains the identification of the 
agent and the necessary information on the 
server associated with it. 

• Registration Acknowledgement: This message 
acknowledges the reception of a Registration 
request. It contains control information that the 
broker would like to communicate to the 
monitoring agent, like for instance the length of 
the measurement interval. 

• Status Query: This message is used to request 
the status of a server; it can be sent at any time. 

• Update: This message is the periodic report 
sent by the monitoring agent to the broker. It 
contains a summary of the performance data 
collected during the last measurement period. 
This message is sent at the end of a 
measurement period or in response to a Status 
Query message from the broker. 

• Stop: The stop message is sent by an agent 
requesting the broker to stop using the server. 



 

 

It is typically sent when a server is going down 
for maintenance. Upon reception of this 
message, the broker returns a Stop 
Acknowledgement and stops assigning clients 
to this server. 

• Stop Acknowledgement: This message is sent 
by the broker to confirm the reception of a Stop 
message. After the reception of such a 
message, an agent stops all data exchanges 
with the broker. 
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Figure 4: Protocol between monitoring agents 

and the broker 

3. Quality of Service Broker 
 Our broker implementation is composed of two 
main modules: a performance monitor and a 
negotiator. These two modules run in parallel as 
separate threads inside the address space of the 
broker, and share a common data structure that 
contains information on servers. 

3.1 Performance Monitoring 
 The monitor module implements the protocol 
described in Section 2.3. It listens on a known port 
for individual servers to join, receives performance 
data about each server, and stores these data for the 
negotiator. When a server registers at the broker, a 
new entry for the server is created and added into 
the server table. The broker maintains two types of 

information for each server: static information such 
as the name and address of the server, service port, 
etc., and dynamic information that is regularly 
updated by monitoring agents as performance data 
are collected. 

3.2 QoS Negotiator  
 The public interface of the broker is accessible 
to the outside world only through the negotiator. 
This interface allows clients to negotiate the choice 
of a server for their sessions. Each client request 
specifies the name of the server cluster where one 
of the servers is to be selected. This name must be 
among those managed by the broker. Upon 
receiving a selection request from the client, the 
negotiator invokes the scheduling policy to select a 
server for the client session.  

 Our prototype is built on the assumption that 
software on the client side is capable of negotiating 
with the broker for the server selection. This 
software is structured as an intermediate engine that 
allows standard browsers to communicate properly 
with the broker. This engine listens on the service 
port of the server cluster and intercepts incoming 
requests from clients. For each request, the 
intermediate software engine interacts with the 
broker to choose a server. The engine then uses the 
standard HTTP temporal redirection mechanism to 
redirect the user to the selected server.  

 At the heart of the negotiator, a scheduler 
handles server selection. The broker may 
implement any number of server selection policies. 
Each policy implements its own scheduler. At the 
starting time of the broker, the list of the available 
policies is loaded, and the administrator of the 
broker can dynamically activate the desired 
selection policy and to enter the necessary 
parameters through the user interface. Examples of 
policies are described in the next section. 

4. Server Selection Policies 
 We distinguish between “static” algorithms and 
“dynamic” algorithms depending on whether data 
on run-time server behavior are used in server 
selection decisions or not. For static algorithms, 
run-time data are not used, and the algorithms under 
consideration are:  



 

 

• Round robin (RR): This algorithm is similar to 
that reported in [2]. Suppose there are N 
servers. Servers are selected in cyclic order, 
i.e., server 1, server 2,…, server N, repeatedly. 

• Random selection (RAN): In this algorithm, a 
server is randomly selected from the cluster of 
servers; each server has the same probability of 
being selected. 

 The dynamic algorithms implemented in our 
prototype require the availability of measurement 
data for the following parameters for each server:  

− mean response time (r)  
− mean service time (s)  
− utilization (u)  
− mean think time (h) 
− mean request arrival rate (λ).  

These parameters are measured by monitoring 
agents as discussed in Section 2. Two dynamic 
algorithms are considered. They are: 

• Least active sessions (LAS): At a given server, 
the number of active sessions can be estimated 
by )( hrNS += λ and the maximum number of 
active session that the server can support by 

sNS /1max = . Under LAS, the server with the 
smallest value of max/ NSNS  is selected. 

• Least utilization (LU): The server with the 
lowest utilization, estimated by u, is selected. 

The details of these two algorithms can be found in 
[1]. 

5. Experimentation 
 Our experimental environment is as follows. A 
broker that manages the assignment of users to 
servers runs on its own machine. Each server 
machine runs an instrumented Apache Web server 
and a monitoring agent that collects performance 
data. 

 Two server clusters were used in our 
experiments. The first cluster, referred to as 
homogeneous cluster, consists of three servers with 
very similar capacities. The mean service time of a 
request at each of these servers is around 0.0035 
seconds and all server machines are connected to 
the same 100 Mb/s LAN. The second cluster is 

heterogeneous. It is composed of three servers with 
noticeably different capacities. The mean service 
times at these servers (denoted by S1, S2, and S3) 
are 0.003, 0.006, and 0.015 seconds respectively. 
Server S2 is located at the University of Montreal 
while the other two (S1 and S3) and the load 
generation machine are on the same 100 Mb/s LAN 
at the University of Ottawa. 

 The load on servers is generated using a 
modified version of the tool SURGE developed at 
Boston University [4]. This tool allows the creation 
of real workload files at servers and contains an 
emulator that mimics the behavior of normal Web 
clients. The SURGE software can generate a 
sequence of URL requests, which exhibit 
representative distributions for document 
popularity, document size, request size, embedded 
document count and think time. We modified the 
tool to include the negotiation phase with the QoS 
broker. The total number of documents stored at 
each Apache server is 2000. Different sizes are 
generated by the tool, as explained in [4]. For the 
case of heterogeneous cluster, the total load 
generated during our experiments is around 660 
requests/sec by 1650 concurrent clients. This yields 
an average utilization of the cluster of 82%. On the 
other hand, the total load generated for the case of 
homogeneous cluster is around 1080 requests/sec 
by 2700 concurrent clients, and the average 
utilization of the cluster is 85%. In each 
experiment, the measurement data are collected for 
periods of 600 seconds. 

5.1 Results 
 As expected, policies such as RR and RAN 
perform well for the case of homogeneous servers. 
The broker achieves very good load balancing 
without using any dynamic information on the 
status of servers. We thus conclude that with a 
homogeneous cluster, simple policies such as RR 
and RAN should be used.  

 For the case of heterogeneous cluster, the 
performance achieved by the four policies is shown 
in Figure 5. We observe that RR and RAN are 
inferior to the dynamic algorithms LAS and LU 
with respect to mean response time. This can be 
explained as follows. RR and RAN do not take the 
difference in server capacities into consideration 
when a server is to be selected. This results in the 



 

 

creation of load imbalance among the servers. As 
shown in Figure 6, the slowest servers S2 and S3 
are highly utilized, while the fastest server S1 
operates at a modest level of utilization (under 70% 
of its capacity). 

 The two dynamic algorithms LU and LAS learn 
the effective capacity of the servers through 
performance data and dynamically adjust the 
distribution of load. LU always dispatches sessions 
in a way to keep servers utilized at the same level. 
This results in good load balancing (see Figure 7). 
The corresponding results for LAS are shown in 
Figure 8. We observe that LAS is less capable of 
load balancing when compared to LU. One should 
note, however, LAS is based on the ratio of the 
estimated number of active sessions at a server and 
the estimated maximum number of sessions that the 
server can handle. The number of active sessions 
increases proportionally with the mean response 
time. A slower server has fewer active sessions that 
it can handle and hence fewer new sessions 
assigned by the broker. It follows that LAS 
achieves the best response time and hence the best 
throughput at the slowest server, among the four 
policies tested. Figure 9 shows the improvement of 
the response time for the slowest server achieved by 
LAS compared to that achieved by LU. 

 Under LAS a larger fraction of the load is 
shifted to the faster server. Specifically, the fastest 
server handled 68.5% of the requests, followed by 
24.5% at the second fastest server. The 
corresponding values under LU are 59% and 30% 
respectively. Finally, Figure 10 summarizes the 
performance of the four different policies for a 
cluster of heterogeneous servers. In an earlier study, 
we have evaluated the performance of the four 
policies presented in this paper using extensive 
simulation [1]. The conclusions obtained in [1] are 
very similar to those obtained by experimentation. 
 

6. Conclusion and Discussions 
 We have built a prototype for our architecture 
and used this prototype to evaluate the performance 
of four server selection policies in a real 
environment. The experimental results showed that 
with homogeneous servers, the performance of 
these policies is very similar. A static algorithm 
such as RR or RAN is therefore effective in load 
balancing for the case of a homogeneous cluster. 

For heterogeneous servers, however, static 
algorithms are not effective, and dynamic 
algorithms (e.g., LAS and LU) that make use of 
performance data perceived represent a robust and 
more predictable alternative. 

 Dynamic algorithms require the server to be 
instrumented and to have the capability of reporting 
performance data. We have adapted for our 
prototype the standard instrumentation ARM API 
and developed a monitoring agent to be associated 
with each server. Instrumentation of servers 
consists of placing functions at the appropriate 
places in the source code. The instrumentation and 
the associated agents provided us with capabilities 
in QoS management and scalability that we could 
not have otherwise. 
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