

An Experimental Prototype for Scalable Server Selection

Mohamed-Vall O. Mohamed-Salem, University of Montreal

Jun Chen and Gregor v. Bochmann, University of Ottawa
Johnny W. Wong, University of Waterloo

Abstract
An experimental prototype for server selection
using an independent brokerage service is
described. This prototype is composed of four main
components: instrumented Apache Web servers,
monitoring agents, a QoS broker, and client
emulator. The role of the broker is to distribute
client sessions to a set of replicated servers. It is
designed to support different types of selection
policies and has the capability to collect
performance data from the servers. We include in
our description the technique used to instrument
Apache servers and our implementation of the
server-broker protocol that we have developed. Our
implementation of the QoS broker and the
technique used to collect data for the performance
parameters of interest are also described. We use
our prototype to study the performance of server
selection algorithms under realistic conditions. The
experimental environment and an analysis of the
experimental results are presented.

1. Introduction
 In recent years, we have seen a significant
growth in the development and deployment of
distributed applications over the Internet. These
include electronic commerce applications that
support the dissemination of information regarding
a company’s products, and the sale of goods and
services. For large-scale deployment, the server
must be able to scale to many users. A common
approach to improve scalability is server
replication. An important challenge in replicated
server architecture is how a client may locate an
appropriate server without being aware of the
specific details of replica organization, and how can

this process scale to a large number of users and
replica.

 In our recent work [1], we investigated the
delegation of server selection functionality to an
independent brokerage service. Specifically, we
studied the use of a “broker” to distribute load to a
set of replicated servers. Our replicated server
architecture has the following properties:

• Scalable to a large number of clients.

• Support for the provision of quality of service.

• Support for feedback mechanisms by which
up-to-date performance information on system
components is available.

 In our architecture, a broker is used to assign
clients to servers at the beginning of their sessions.
After server selection, each client may interact
directly with the server for a period of time
specified by the broker. This is different from other
approaches where server selection is done on a per
user request basis (see for example [2]). Our
architecture allows the broker to gather information
about the status of each server and use such
information for load balancing purposes.
Performance data are collected by monitoring
agents at the servers and sent to the broker. The
protocol between the broker and the monitoring
agent is quite straightforward. It simply involves
the periodic transmission of performance data to the
broker. Our architecture also allows for a flexible
organization of resources used by web sites. The
broker could be at the server site under the same
authority as the replicated servers. This is
applicable, for example, to sites with heavy load
and high degree of replication. Different sites may
also share the same broker. In this case, the broker
could be an independent brokerage service that

manages the assignment of servers for affiliated
sites.

DNS

Clients

Broker

Server(1)Agent

Server(n)Agent

Sh
op

 N
am

e

Broker IP addr.

Req. (IP, Port)

Resp. (ServIP, TTL)

Req. (ServIP, URL)

Resp. (Page)

Server(2)Agent

Performance
Report

Performance
Report

Performance
Report

Figure 1: Basic architecture and interactions

between its components

 The negotiation between broker and client is
carried out at the beginning of a session. The
protocol between the client and the broker is
illustrated in Figure 1. The client sends a server
selection request to the web site address, specified
by an URL. This URL is mapped by the DNS to the
IP address of the broker. The broker, upon
receiving the client's request, selects a server and
returns the IP address of that server, together with a
quantum size, to the client. The client then sends its
requests to this IP address; it also caches the IP
address to be used for subsequent requests. The
cache entry will be deleted when the quantum
expires. Note that the above protocol needs to be
implemented at the client and we assume that this is
possible. Note also that the client-broker protocol
can be extended to include QoS negotiation, which
can be based on client classification, client
performance requirement, or server availability.

 We have developed a prototype for the above
architecture and conducted experiments to evaluate
its performance. This prototype is composed of the
following four components: instrumented Web
servers, monitoring agents, QoS broker, and client
emulator. The objective of the experiments is to
evaluate the performance of server selection
policies in a real environment.

 This paper is organized as follows. Section 2
describes the technique we have used to instrument
the servers and the reporting protocol between
monitoring agent and broker. We also describe in
the same section, the various server performance
parameters of interest to our study and how they are

collected. Section 3 describes the implementation of
the QoS broker and its public access points. Section
4 contains a description of the various server
selection policies implemented by the broker and
used in our experiments. In Section 5, we describe
the test environment and analyze the experimental
results. Finally, Section 6 contains a summary of
our findings and some concluding remarks.

2. Collection of Performance Data
 In our prototype, each server is associated with
an agent that monitors its performance and
periodically reports this information to the broker.
Figure 2 shows the entire monitoring system, which
consists of an instrumented Apache Web server, a
monitoring agent that resides on the same machine
on which the server is running, and a remote QoS
broker.

On the same machine

Apache
server
application

Monitoring
agent

Pipes / Shared
Memories

QoS
broker

UDP/IP
sockets

Figure 2: Monitoring system

2.1 Instrumentation of Servers
 The parameters that need to be measured at the
server are gathered using function calls inserted as
probes within the code of the server. Triggers are
sent to the monitoring agent when these function
calls are executed. The agent would thus know
when each transaction started and when it is
completed. It is also possible to receive other
information from the server like for instance the
identity of the client and details about the requested
pages. The communication between the server and
the agent is done by means of standard inter-
process communication (IPC) mechanisms like for
instance pipes or shared memory.

 We use in our prototype an application
programming interface (API) called Application
Response Measurement (ARM). The ARM API is
made up of a set of functions that are contained in a

shared library. Calls to these functions are inserted
at appropriate places in the code. Performance
measurement agents that support the API
implement these functions. The advantage of this
approach is the isolation of server instrumentation
from monitoring actions that need to be taken while
an application is running. Application providers
have the freedom to choose any monitoring agent
that best meets their need without the application
needing any changes. The ARM API that we are
using has the following functions:

• arm_init: This function is used in the
initialization phase of an application. In our
implementation of the API, we use this
function to initiate the communication between
the monitoring agent and the monitored Web
server.

• arm_getid: This function is used to obtain a
unique identifier that is used to characterize a
class of transactions. It allows us to monitor
different types of request that a server is
handling. However, in our implementation, we
do not use this feature and hence do not
differentiate between the types of request that
the Web server is processing.

• arm_start: This function signals the start of
execution of an instance of a transaction of a
particular class. It returns a unique identifier
that is passed as a parameter for two other
functions: arm_update and arm_stop.

• arm_update: This is an optional function that
can be called any number of times after the
start of a transaction and before it stops. It can
be used to signal the progress of a transaction.

• arm_stop: This function signals the completion
of a transaction.

• arm_end: This function is used by an
application to do the global clean up of all
resources used by the ARM API. In our
implementation, when this message is received,
the monitoring agent sends a message to the
broker signaling that the server application is
exiting.

 Figure 3 shows the instrumentation of an
Apache server using the ARM API to monitor the
start and the completion of a client request.

arm_init();
arm_getid();
while(1){

listen();
create_worker_process

}
.
.
arm_end();

Main Process arm_start();
Process request

arm_stop();

worker process # 1

.

.

.

.

arm_start();
Process request

arm_stop();

worker process # n

arm_init();
arm_getid();
while(1){

listen();
create_worker_process

}
.
.
arm_end();

Main Process arm_start();
Process request

arm_stop();

worker process # 1

.

.

.

.

arm_start();
Process request

arm_stop();

worker process # n

arm_init();
arm_getid();
while(1){

listen();
create_worker_process

}
.
.
arm_end();

Main Process

arm_init();
arm_getid();
while(1){

listen();
create_worker_process

}
.
.
arm_end();

Main Process arm_start();
Process request

arm_stop();

worker process # 1

arm_start();
Process request

arm_stop();

worker process # 1

.

.

.

.

arm_start();
Process request

arm_stop();

worker process # n

arm_start();
Process request

arm_stop();

worker process # n

Figure 3: Instrumentation of an Apache server

2.2 Computation of Performance Data
 Data on the servers' run-time behavior are
collected by monitoring agents and periodically
transmitted to the broker. Our monitoring agent
collects data for the following parameters, which
are used in our server selection algorithms [1]:

2.2.1 Mean response time of server

 The agent has information about when a
transaction starts and when it stops. These
correspond to the time at which it receives triggers
for arm_start() and the corresponding arm_stop(),
respectively. The difference between the two values
gives the response time for that particular
transaction. During each measurement interval, the
agent keeps track of the number of requests
completed by each server and the sum of the
response times for these requests. These two values
are then used to compute the average response time
of the server for that particular measurement period.

2.2.2 Mean service time at server

 The mean response time includes the mean
waiting time and mean service time. An Apache
server is available in a multi-threaded architecture
for the different Windows platforms and a multi-
process architecture for the UNIX platform. For the
multi-threaded architecture, the server uses a main
process which manages a FIFO queue for waiting
jobs, and a set of worker threads which
continuously remove and process one job at a time
from the head of the queue. Our instrumentation is
done in such a way that it allows us to measure the

time spent by each request in the waiting queue.
The mean service time can then be obtained as the
difference between the mean waiting time and the
mean response time.
 In the multi-process architecture, a new process
is created for each new connection. The master
process at the server does not implement a waiting
queue for jobs and it is therefore not possible to
isolate the waiting time from the service time. In
this case, we measure the mean service time at each
server off-line and statically feed this information to
the agent and the broker. The measurement is done
as follows. For each server that we use in our
experiments, we measure the mean response time
when the machine is serving only one request at a
time and when no other jobs are running on it. The
load generator is configured to emulate one single
client for a long enough time period to ensure that
documents of different sizes are fetched. The client
does not experience any waiting time and hence the
mean response time can be used as an estimate for
the mean service time.

2.2.3 Mean request arrival rate

 The load on each server is calculated as the
number of requests received during a measurement
interval. Every time that the agent receives a trigger
for an arm_start(), the total number of received
requests is incremented by one. The request arrival
rate is computed by dividing this total number by
the length of the measurement interval.

2.2.4 Utilization of a server

 The utilization of a server in a measurement
interval is calculated as the fraction of time that the
server is busy servicing requests. It is computed as
the ratio of the total service time in a measurement
interval over the length of the interval.

2.2.5 Mean think time

 The mean think time is defined to be the time
between consecutive requests from the same client.
It should be noted that from the perspective of the
server, each request could be for an individual
object, such as a static file, an image, a dynamic
request, etc. Each client is identified by its IP
address, which is determined within the Apache
server code itself and passed to the monitoring
agent. The monitoring agent keeps track of all the

think times of each client during a measurement
interval, and uses this information to compute an
overall mean think time at the monitored server.

2.3 Performance Reporting Protocol
 Communication with the broker is carried out
using UDP packets. A proprietary reporting
protocol is used between monitoring agents on the
server side and the broker. This protocol allows the
agent to register with the broker, send performance
updates, and sign off when the server is going
down. As soon as the agent is activated on the
server side, it registers itself with the broker by
sending information on the server it is monitoring
(address and characteristics) to the broker. When
the broker accepts the registration, it returns a
unique identifier to be used for all subsequent
interactions and a desired length for the
measurement interval. During the lifetime of the
agent, the collected data is summarized in a report
that is sent to the broker at the end of each
measurement interval. The message exchanges
between the broker and the agent are defined as
follows (see Figure 4):

• Registration: A monitoring agent sends this
message to register the machine on which it is
running. It is sent each time the agent is
restarted. It contains the identification of the
agent and the necessary information on the
server associated with it.

• Registration Acknowledgement: This message
acknowledges the reception of a Registration
request. It contains control information that the
broker would like to communicate to the
monitoring agent, like for instance the length of
the measurement interval.

• Status Query: This message is used to request
the status of a server; it can be sent at any time.

• Update: This message is the periodic report
sent by the monitoring agent to the broker. It
contains a summary of the performance data
collected during the last measurement period.
This message is sent at the end of a
measurement period or in response to a Status
Query message from the broker.

• Stop: The stop message is sent by an agent
requesting the broker to stop using the server.

It is typically sent when a server is going down
for maintenance. Upon reception of this
message, the broker returns a Stop
Acknowledgement and stops assigning clients
to this server.

• Stop Acknowledgement: This message is sent
by the broker to confirm the reception of a Stop
message. After the reception of such a
message, an agent stops all data exchanges
with the broker.

Monitoring agent

: : :

Stop

Update (1)

Update (2)

Update (n)

Registration_ack

Registration

QoS broker

Stop response

Query message

 Query response msg

Figure 4: Protocol between monitoring agents

and the broker

3. Quality of Service Broker
 Our broker implementation is composed of two
main modules: a performance monitor and a
negotiator. These two modules run in parallel as
separate threads inside the address space of the
broker, and share a common data structure that
contains information on servers.

3.1 Performance Monitoring
 The monitor module implements the protocol
described in Section 2.3. It listens on a known port
for individual servers to join, receives performance
data about each server, and stores these data for the
negotiator. When a server registers at the broker, a
new entry for the server is created and added into
the server table. The broker maintains two types of

information for each server: static information such
as the name and address of the server, service port,
etc., and dynamic information that is regularly
updated by monitoring agents as performance data
are collected.

3.2 QoS Negotiator
 The public interface of the broker is accessible
to the outside world only through the negotiator.
This interface allows clients to negotiate the choice
of a server for their sessions. Each client request
specifies the name of the server cluster where one
of the servers is to be selected. This name must be
among those managed by the broker. Upon
receiving a selection request from the client, the
negotiator invokes the scheduling policy to select a
server for the client session.

 Our prototype is built on the assumption that
software on the client side is capable of negotiating
with the broker for the server selection. This
software is structured as an intermediate engine that
allows standard browsers to communicate properly
with the broker. This engine listens on the service
port of the server cluster and intercepts incoming
requests from clients. For each request, the
intermediate software engine interacts with the
broker to choose a server. The engine then uses the
standard HTTP temporal redirection mechanism to
redirect the user to the selected server.

 At the heart of the negotiator, a scheduler
handles server selection. The broker may
implement any number of server selection policies.
Each policy implements its own scheduler. At the
starting time of the broker, the list of the available
policies is loaded, and the administrator of the
broker can dynamically activate the desired
selection policy and to enter the necessary
parameters through the user interface. Examples of
policies are described in the next section.

4. Server Selection Policies
 We distinguish between “static” algorithms and
“dynamic” algorithms depending on whether data
on run-time server behavior are used in server
selection decisions or not. For static algorithms,
run-time data are not used, and the algorithms under
consideration are:

• Round robin (RR): This algorithm is similar to
that reported in [2]. Suppose there are N
servers. Servers are selected in cyclic order,
i.e., server 1, server 2,…, server N, repeatedly.

• Random selection (RAN): In this algorithm, a
server is randomly selected from the cluster of
servers; each server has the same probability of
being selected.

 The dynamic algorithms implemented in our
prototype require the availability of measurement
data for the following parameters for each server:

− mean response time (r)
− mean service time (s)
− utilization (u)
− mean think time (h)
− mean request arrival rate (λ).

These parameters are measured by monitoring
agents as discussed in Section 2. Two dynamic
algorithms are considered. They are:

• Least active sessions (LAS): At a given server,
the number of active sessions can be estimated
by)(hrNS += λ and the maximum number of
active session that the server can support by

sNS /1max = . Under LAS, the server with the
smallest value of max/ NSNS is selected.

• Least utilization (LU): The server with the
lowest utilization, estimated by u, is selected.

The details of these two algorithms can be found in
[1].

5. Experimentation
 Our experimental environment is as follows. A
broker that manages the assignment of users to
servers runs on its own machine. Each server
machine runs an instrumented Apache Web server
and a monitoring agent that collects performance
data.

 Two server clusters were used in our
experiments. The first cluster, referred to as
homogeneous cluster, consists of three servers with
very similar capacities. The mean service time of a
request at each of these servers is around 0.0035
seconds and all server machines are connected to
the same 100 Mb/s LAN. The second cluster is

heterogeneous. It is composed of three servers with
noticeably different capacities. The mean service
times at these servers (denoted by S1, S2, and S3)
are 0.003, 0.006, and 0.015 seconds respectively.
Server S2 is located at the University of Montreal
while the other two (S1 and S3) and the load
generation machine are on the same 100 Mb/s LAN
at the University of Ottawa.

 The load on servers is generated using a
modified version of the tool SURGE developed at
Boston University [4]. This tool allows the creation
of real workload files at servers and contains an
emulator that mimics the behavior of normal Web
clients. The SURGE software can generate a
sequence of URL requests, which exhibit
representative distributions for document
popularity, document size, request size, embedded
document count and think time. We modified the
tool to include the negotiation phase with the QoS
broker. The total number of documents stored at
each Apache server is 2000. Different sizes are
generated by the tool, as explained in [4]. For the
case of heterogeneous cluster, the total load
generated during our experiments is around 660
requests/sec by 1650 concurrent clients. This yields
an average utilization of the cluster of 82%. On the
other hand, the total load generated for the case of
homogeneous cluster is around 1080 requests/sec
by 2700 concurrent clients, and the average
utilization of the cluster is 85%. In each
experiment, the measurement data are collected for
periods of 600 seconds.

5.1 Results
 As expected, policies such as RR and RAN
perform well for the case of homogeneous servers.
The broker achieves very good load balancing
without using any dynamic information on the
status of servers. We thus conclude that with a
homogeneous cluster, simple policies such as RR
and RAN should be used.

 For the case of heterogeneous cluster, the
performance achieved by the four policies is shown
in Figure 5. We observe that RR and RAN are
inferior to the dynamic algorithms LAS and LU
with respect to mean response time. This can be
explained as follows. RR and RAN do not take the
difference in server capacities into consideration
when a server is to be selected. This results in the

creation of load imbalance among the servers. As
shown in Figure 6, the slowest servers S2 and S3
are highly utilized, while the fastest server S1
operates at a modest level of utilization (under 70%
of its capacity).

 The two dynamic algorithms LU and LAS learn
the effective capacity of the servers through
performance data and dynamically adjust the
distribution of load. LU always dispatches sessions
in a way to keep servers utilized at the same level.
This results in good load balancing (see Figure 7).
The corresponding results for LAS are shown in
Figure 8. We observe that LAS is less capable of
load balancing when compared to LU. One should
note, however, LAS is based on the ratio of the
estimated number of active sessions at a server and
the estimated maximum number of sessions that the
server can handle. The number of active sessions
increases proportionally with the mean response
time. A slower server has fewer active sessions that
it can handle and hence fewer new sessions
assigned by the broker. It follows that LAS
achieves the best response time and hence the best
throughput at the slowest server, among the four
policies tested. Figure 9 shows the improvement of
the response time for the slowest server achieved by
LAS compared to that achieved by LU.

 Under LAS a larger fraction of the load is
shifted to the faster server. Specifically, the fastest
server handled 68.5% of the requests, followed by
24.5% at the second fastest server. The
corresponding values under LU are 59% and 30%
respectively. Finally, Figure 10 summarizes the
performance of the four different policies for a
cluster of heterogeneous servers. In an earlier study,
we have evaluated the performance of the four
policies presented in this paper using extensive
simulation [1]. The conclusions obtained in [1] are
very similar to those obtained by experimentation.

6. Conclusion and Discussions
 We have built a prototype for our architecture
and used this prototype to evaluate the performance
of four server selection policies in a real
environment. The experimental results showed that
with homogeneous servers, the performance of
these policies is very similar. A static algorithm
such as RR or RAN is therefore effective in load
balancing for the case of a homogeneous cluster.

For heterogeneous servers, however, static
algorithms are not effective, and dynamic
algorithms (e.g., LAS and LU) that make use of
performance data perceived represent a robust and
more predictable alternative.

 Dynamic algorithms require the server to be
instrumented and to have the capability of reporting
performance data. We have adapted for our
prototype the standard instrumentation ARM API
and developed a monitoring agent to be associated
with each server. Instrumentation of servers
consists of placing functions at the appropriate
places in the source code. The instrumentation and
the associated agents provided us with capabilities
in QoS management and scalability that we could
not have otherwise.

0.00

0.05

0.10

0.15

0.20

M
ea

n
R

es
po

ns
e

Ti
m

e
(s

ec
.)

RR RANDOM LAS LU

Selection Policy

(Heterogeneous servers)

Figure 5: Mean response time achieved by the

various policies

(heterogeneous cluster)

0.000

0.200

0.400

0.600

0.800

1.000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization

C
um

. P
ro

b. S1

S2

S3

Figure 6: Probability of saturation of servers

using RR

Acknowledgement
 This work was supported by the Canadian
Institute for Telecommunications Research under

the Networks of Centres of Excellence Program of
the Government of Canada, and by the IBM
Toronto Laboratory Centre for Advanced Studies.
The authors would like to thank Radha
Subrahmanyan for the implementation of the
monitoring agent and the instrumentation of the
Apache server on Windows platform, and Chun
Bafu for the work on porting the code on a UNIX
platform. The authors would like also to thank
Richard Bell for his help in setting up the hardware
for the experimentation.

(heterogeneous cluster)

0.000
0.200
0.400
0.600
0.800
1.000

0.1

0.3

0.5

0.7

0.9

Utilization

C
um

. P
ro

b. S1
S2
S3

Figure 7: Probability of saturation of servers
using LU

(heterogeneous cluster)

0.000
0.200
0.400
0.600
0.800
1.000

0.1

0.3

0.5

0.7

0.9

Utilization

C
um

. P
ro

b.

S1

S2

S3

Figure 8: Probability of saturation of servers

using LAS

References

[1] M. Salem, J.W. Wong, and G.v. Bochmann: “A
Scalable Load-Sharing Architecture for
Distributed Applications”, Proc. SoftCom
'2001, Split, Croatia.

[2] M. Colajanni, P.S. Yu, D.M. Dias, “Analysis of
task assignment policies in scalable distributed
Web-server systems”, IEEE Trans. on Parallel
and Distributed Systems, vol. 9, no. 6, 1998.

[3] R. Jain: “The Art of Computer Systems
Performance Analysis”, John Wiley & Sons,
1991.

[4] P. Barford and M. Crovella, “Generating
Representative Web Workloads for Network
and Server Performance Evaluation”, Proc.
ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer
Systems, 151-160, July 1998.

Response time at the slowest server

0.00

0.20

0.40

0.60

0.80

1.00

0.03

0.06

0.12

0.18

0.24

0.30

0.36

response time

pe
rc

en
til

es
LAS

LU

Figure 9: Response time at the slowest server in

heterogeneous cluster

(heterogeneous cluster)

0.60

0.70

0.80

0.90

1.00

0.03

0.12

0.24

0.36

0.48

0.60

0.72

0.84

0.96

1.08

Response time

Pe
rc

en
til

es

RR

RAND

LAS

LU

Figure 10: Response time achieved by the

different policies

